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Abstract

Real options achieve their value from flexible management response to signals
about uncertainty. Any constraint on flexibility will obviously impair the real op-
tion value.

Regulation imposes constraints on operations, but also provides tariffs to the
regulated entity. Thus, it is not obvious that the regulated entity necessarily suffers
a value loss from regulation, if the tariffs are excessively generous. The question
of whether the tariffs are excessively generous is a question of social optimality.
We address this question in the context of facilities access, which is a popular
method of “deregulating” industries that had monopoly power. The regulator
determines tariffs for access to the production facilities of the oligopolist facility
owner so that competitors can use the facilities and offer the consumption good in
a competitive market. This is the basis for deregulation of power, gas distribution
and telecom industries. It has also been proposed in industries that were not
formerly regulated, such as the rail infrastructure for integrated mining industries.

Pindyck has suggested that access tariffs in these cases should include compen-
sation for the capital costs plus the real option premium that was extinguished to
establish the facility. But he offers no proof, nor any analysis of the magnitude
and direction of the distortion if compensation is only offered for the capital costs
only. Also, he does not consider two-part tariff structure with an up-front access
tariff, plus an annual tariff for capacity. In this paper, we investigate these issues
numerically.

1 Introduction

In this paper, we investigate optimal tariffs for facilities access when the facility Builder
has a real option to choose the optimal timing of construction. Pindyck (2004, 2005)
suggests that the cost base for a regulated access tariff should include actual out-of-
pocket costs of the facilities Builder plus the value of real options that are extinguished
by committing capital and building. Pindyck suggests that not allowing for a recovery
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of the real option value will distort the ex ante incentives of the facilities Builder and
not result in a first-best solution. However, he focuses on the analysis of a one-part
tariff that would recover the total cost (capital plus option opportunity cost) without
analyzing the nature (social cost, change in investment timing) of the distortions from
various tariff policies. Moreover, he does not consider the possibility of a two-part
tariff to mitigate those distortions. This paper analyzes those possibilities.

We use a methodology for analyzing entry and exit options from Dixit et al. (1999);
Sødal (2006) to analyze this model.

2 The Model

We study a market in which one or two producers produce a product that sells in a
competitive market.

Demand is proportional to a stochastic variable X that follows the process

dX = µX dt + σ X dz . (1)

We assume this risk is unsystematic, so the true probability process and the risk-neutral
probability process are the same.

The Builder has annual sales of qB = αBX, and the Seeker has sales of qS = αSX,
where 0 < αS ≤ αB are constants.. Thus, the two face the same global shocks, but the
Builder is a larger entity.

A facilities provider or Builder, B, has real options to build and to abandon a facility
of capacityQ units of annual production for a capital cost of K. Capacity is lumpy, and
the Builder cannot build anything other than exactly Q units of capacity. We suppose
there is facilities access legislation under which another entity, S can seek access to a
fraction f ∈ (0,1) of this production capacity to make its own product. The access
Seeker must pay the Builder a two-part tariff consisting of a fixed entry fee of kSfQ,
where kS is the tariff rate, and an annual take-or-pay capacity charge of TfQ, where
T is the annual toll rate.1 This toll rate is in addition to any variable operating costs
for the facility, which we take as an offset to selling price. That is, we can embed any
variable costs in the net selling price PB , PS is net of these variable costs. The Builder
and the access Seeker face the same product selling price, and they are price takers, but
the Seeker is assumed to have operating costs that are at least as large as the Builder,
so PS ≤ PB .

To summarize the access policy, the access Seeker must nominate or reserve capac-
ity f (and it must be excess to the then-current needs of the Builder) for a fixed fee that
is paid at the time it claims the capacity. Thereafter, the Seeker must pay an annual
toll fee proportional to the capacity used, until it abandons the use of capacity. When

1This includes the common single-part tariff structure, when kS = 0.
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it abandons the project, it does not receive a refund from the Builder (there is no way
to require the Builder to maintain liquidity as a refund to the Seeker). But, it does gain
relief from having to pay the annual capacity charge.

If the Builder is using qB ∈ [0,Q] units of capacity at the time the Seeker nominates
the capacity, then, since the Seeker can only use excess capacity, we must have f ∈
(0,1− qB/Q). In particular, if the Seeker waits until the Builder is using all capacity, it
is not allowed to enter.2

We first analyze the access Seeker’s problem to determine rational behaviour and
optimal value. Given this behaviour, we study the Builder’s problem to determine op-
timal behaviour and value. Behaviours of the Builder and Seeker are characterized by
demand thresholds or triggers that they set optimally.

The Builder enters the market (builds) when the demand shock first rises above
an endogenous trigger threshold XBB . The Seeker enters the market at a threshold
XSE (which must be higher because the Seeker needs the facilities that the Builder con-

structs). At some higher threshold, XFB = Q(1−f)
αB , the Builder is using full capacity, and

does not have stochastic production until demand falls below this threshold. At an-

other point, which may be higher or lower, XSF = fQ
αS , the Seeker is using its full capacity

and does not have stochastic production until demand falls below this threshold.
On the other hand, at some threshold XSA < XSE , the access Seeker will abandon

the market, with the only benefit being the relief from having to pay the annual access
tariff. At a lower threshold SBA <min{XSA, XBB}, the builder also abandons the market
to receive a salvage value SB ∈ [0, K). If SB = 0, the Builder will never abandon, since
it pays no fixed costs. If there are fixed costs of production, their present value can be
included in the capital cost K, salvage value SB and the tariff T .

We assume the riskless interest rate is r .

3 The Access Seeker’s Problem

The access Seeker has decision variables f ,XSE, XSA and it has different value functions
when it is

• waiting for development, W , when X < XSE , with value VS,W (X;f ,XSE, XSA)

• producing at the rate αSX when production has been started and XSA < X ≤
XSF ≡ fQ

αS , with value VS,P(X;f ,XSE, XSA)

• producing at the capped rate fQ when X ≥ XSF , with value VS,SF(X;f ,XSE, XSA)

2If the Seeker enters at the same time as the Builder enters, it could, in principle, form a joint venture
with the Builder, sharing the capital costs in the proportion f and foregoing the annual operating tarrif,
so that T = 0.
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• abandoned, A, and cannot re-open, with value VS,A(X;f ,XSE, XSA) = 0.

The problem is time invariant, so the fundamental partial differential equation for
valuation is an ordinary differential equation. There is an ODE for each of these 3
regions, and they are bound together by value-matching conditions at their end-points,
and they are optimized by the smooth pasting conditions at the boundaries. This is
the traditional solution to the problem, as in Dixit (1989), for example. However, we
can simplify the analysis using the discount factor approach of Dixit et al. (1999); Sødal
(2006). We will discuss both approaches.

3.1 Access Seeker is Waiting for Development

σ2X2

2

d2VS,W
dX2

+ µXdVS,W
dX

= rVS,W (2)

The value-matching condition is from closed to open, where it must pay the up-front
tariff kSfQ:

VS,W (XSE ;f ,XSE, XSA) = VS,P(XSE ;f ,XSE, XSA)− kSfQ (3)

It also must satisfy the feasibility constraint

f ≤ 1− q
Q

(4)

where q = αBXSE is the production of the Builder at the time it enters.

3.2 Access Seeker is Operating Below its Nominated Capacity fQ

σ2X2

2

d2VS,P
dX2

+ µXdVS,P
dX

+αBXP − TfQ = rVS,P (5)

One value-matching condition is from the transition of producing freely to producing
at the nominated capacity:

VS,P(XSF ;f ,XSF , XSA) = VS,SF(XSF ;f ,XSE, XSA) (6)

The other value-matching condition is from the transition of producing freely to aban-
donment:

VS,P(XSA;f ,XSF , XSA) = 0. (7)

3.3 Access Seeker is Constrained by its Nominated Capacity fQ

σ2X2

2

d2VS,SF
dX2

+ µXdVS,SF
dX

+QP − TfQ = rVS,SF (8)

The value-matching condition is the same as equation (6).
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4 The Discount Factor Solution

Dixit et al. (1999); Sødal (2006) develop a nice procedure for solving these switching
problems. The procedure extends the notion that we can derive the present value
(PV) of an annuity by taking the present value of a perpetuity 1/r and subtracting the
present value of a delayed perpetuity ert/r representing the present value of the cash
flows lost when the payments are stopped at time t. The terminal point of the annuity
is a boundary where the cash flow stream transitions to a new value.

The discount factor approach involves finding the expected PV factor for the hitting
time or first transition time to the boundary. We can take the value of perpetual cash
flows, ignoring the boundary, and subtract the expected hitting-time PV of the change
in value when the process hits the boundary. The change in value may require knowing
the value if the stochastic process returns to the original boundary, but this only results
in a linear system of equations for the two boundary values.

The expected PV factor is a value that is computed from the fundamental PDE (ODE
in our case) for valuation, coupled with a terminal value of 1 at the boundary. That is,
consider the stochastic process (1) for X. (We have assumed that this is both the true
and the risk-neutral process for X, and what we need is the risk-neutral process.) Let
D(X1;X2) be the expected PV factor for the random transition time from X = X1 to a
fixed value X2. This is the value at a point where X = X1 of a security D(X;X?) that
pays nothing prior to hitting the boundary, and pays 1 when the boundary is first hit.
Thus, B satisfies the fundamental ODE for valuation:

σ2D2

2
d2D
dX2

+ µDdD
dX

= rD (9)

with the terminal condition
D(X?;X?) = 1 (10)

The general solution to the ODE (9) is

D(X) = A1Xγ1 +A2Xγ2 (11)

where

γ1 =
1
2
− µ
σ2
+
√(

1
2
− µ
σ2

)2

+ 2r
σ2

(12)

γ2 =
1
2
− µ
σ2
−
√(

1
2
− µ
σ2

)2

+ 2r
σ2

(13)

Following the usual limiting arguments for X → 0 and X → ∞, we can separate the
cases where X has to increase to its boundary (A2 = 0) and X has to decrease to its
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bundary (A1 = 0), we can determine the other Ai by the appropriate value matching
condition, and conclude that the expected discount factor to the boundary is

D(X;X?) =


(
X
X?
)γ1

if X < X?,(
X
X?
)γ2

if X ≥ X?.
(14)

This solution works directly when there is only one transition boundary out of the
region. When the region has two boundaries, (Sødal, 2006, Section 4) shows how to
compute the conditional expected PV to the two transition boundaries, and combine
them to solve the the value for the problem with upper and lower boundaries, corre-
sponding to entry and exit. To consider this two-boundary problem, let D(X;X1, X2)
be the expected discount factor to hitting the boundary X1 first before hitting X2. That
is, it is the value of a security that pays 1 at the first passage time for the boundary
X1, provided that the boundary X2 has not yet been reached. We can have X1 < X2 or
X2 < X1. The ODE for the value of D is still equation (9), so the general solution is still
equation (11), but we have new boundary conditions:

D(X1;X1, X2) = 1

D(X2;X1, X2) = 0.

The conditions says that the discount factor to the boundary is 1 if we start at that
boundary and 0 if we start at the other boundary. Substituting these into equation (11)
gives two equations for A1, A2:

A1X
γ1
1 +A2X

γ2
1 = 1

A1X
γ1
2 +A2X

γ2
2 = 0.

After some elementary linear algebra, we find:

D(X;X1, X2) =
Xγ1 −X(γ1−γ2)

2 Xγ2

Xγ1
1 −X(γ1−γ2)

2 Xγ2
1

. (15)

We can also verify that it provides sensible discount factors if the process X starts
between the two boundaries: 0 ≤ D(X;X1, X2) ≤ 1 if and only if min{X1, X2} ≤ X ≤
max{X1, X2}. Also, when X2 → ∞, this approaches the standard abandonment option
with threshold X1, and when X2 → 0, it becomes the standard development option with
threshold X1.

We now use these expected discount factors to solve the individual sub-problems
of Section 3.
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4.1 Access Seeker is Waiting for Development

We use the expected discount factor to the development boundary and the change
in value at the boundary. That is, prior to development, the Seeker has a perpetual
stream of a 0 cash flow. But, at the time of development (X = XSE), it exchanges this
for a perpetuity in sales net of tariffs, worth αSXSEPS/(r − µ) − TFQ/r . The perpe-
tuity is offset by the expected PV of the value changes at the boundaries accessible
after development. One is the expected PV of the value lost if X hits the cap XSF ,

which is D(SSE ;XSF , XSA)
(
αSXSFPS
(r−µ) −

TfQ
r − VS,SF(XSF ;f ,XSE, XSA

)
. Note that we must

use the conditional expected PV factor, since this is the case where X hits the capacity
boundary before it hits the abandoment boundary. The other is the loss of perpet-
ual revenue at abandonment, again with a conditional expected PV factor, which is

D(SSE ;XSA, XSF)
(
αSXSEPS
(r−µ)

)
. Note that this implicitly means that the gain at abandon-

ment is the relief from having to make future tariff expenditures. Thus:

VS,W (XSE ;f ,XSE, XSA) =
αSXSEPS
(r − µ) −

TfQ
r
− kSfQ

−D(XSE ;XSF , XSA)
(
αSXSFPS
(r − µ) −

TfQ
r
− VS,SF(XSF ;f ,XSE, XSA)

)

−D(XSE ;XSA, XSF)
(
αSXSEPS
(r − µ)

)
for X ≤ XSE. (16)

Prior to development (X < XSE), the value is the expected PV of the value at devel-
opment:

VS,W (X;f ,XSE, XSA) = D(X,XSE)VS,W (XSE ;f ,XSE, XSA).

4.2 Access Seeker is Operating Below its Nominated Capacity fQ

This case is the extension of subsection 4.1 to the situation where X ∈ (XSA, XSF).

VS,W (X;f ,XSE, XSA) =
αSXPS
(r − µ) −

TfQ
r

−D(X;XSF , XSA)
(
αSXPS
(r − µ) −

TfQ
r
− VS,SF(XSF ;f ,XSE, XSA)

)

−D(X;XSA, XSF)
(
αSXPS
(r − µ)

)
for X ∈ (XSA, XSF). (17)

4.3 Access Seeker is Constrained by its Nominated Capacity fQ

This is a slightly problematic condition, because the stochastic demand shock could,
in theory, hit this boundary and reflect back at the boundary. This only happens with
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probability zero, and the relevant case is that it goes through the boundary before
reflecting back. Thus, we will consider the case where X > XSF and then consider the
limit as X → XSF , since the value function should be continuous at the boundary. When
X > XSF , there are two possibilities of subsequent events: eitherX never hitsXSF again,
or it does hit XSF again, at which time it reverts to the unconstrained operation. The
overall value is the PV of perpetual operation at the boundary minus the expected PV of
the value change when it reverts from constrained to unconstrained operation. Thus,
for X > XSF

VS,SF(X;f ,XSF , XSA) =
PSfQ
r

−D(X;XSF)
(
PSfQ
r

− VS,SF(XSF ;f ,XSE, XSA)
)

(18)

**We need a better characterization of the value in the capped region, sinceD(X;XSF)→
1 as X → 1, so that, in the limit, (18) does not succeed in identifying the value of
VS,SF(XSF ;f ,XSE, XSA). The problem is well-defined, but the solution is a little more
subtle than I have here.

One solution is to treat the region [0,∞) as a perpetual production region where
the seeker has lost a set of upside call options on production. We could calculate
Black-Scholes call option values for each future date and integrate over dates to get the
total value of production lost to the cap. Then, this value would be adjusted by the
probability of going to the abandonment boundary. The solution would be numerical.

4.4 Access Seeker Optimization

The valuations above are conditional on the decision parameters f ,XSE, XSA for the
access Seeker. We can numerically optimize the value prior to development over these
parameters, and we have the policy and value for the access seeker.

5 The Facilities Builder Problem

The solution of the facilities Builder will proceed in a similar fashion, where the Builder
must determine the threshold at which to build and to abandon. Given its decisions,
the access Seeker will optimize its decisions, so the Builder will rationally anticipate
this optimal response in determining its own policy. We can numerically solve for the
Builders decision policy and value.
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6 Analysis

Given the solution to the Seeker and Builder problem, we can proceed to analyze how the
solution varies with the two-part tariff policy. We can see how the Builder’s decisions
will change for different tariff policies, identifying how the tariff decisions cause it to
produce early or late. We can also sum the value for the Builder and the Seeker to
calculate a social value. This allows us to assess the social value losses from specific
tariff policies. For example, we can measure the social loss from a single-part tariff,
and we can also measure the social loss when that tariff reimburses out-off pocket
construction costs only.
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